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Cloud Rendering

Reference RPNN (9 min) | Reference . RPNN (9 min)

edge-darkening effects silverlining

https://www.youtube.com/watch?v=0MJI9IF _3fl



Scattering of Light

sy,

Light scattering in
microscale, not just in
macro scale

http://ww?2010.atmos.uiuc.edu/(Gh)/guides/mtr/opt/mch/sct.rxml



Problem Configuration & Notation

w: direction

oY x:location
We want to know (compute) the radiance at (x, w)
To render a whole cloud image,
We need to know the radiance at all (visible)
» positions and directions
" )

Problem: How to efficiently compute the

radiance at a specific position and a direction ?
- Y,




Problem Configuration & Notation

w: direction

x: location

We want to know (compute) the radiance at (x, w)

To render a whole cloud image,
We need to know the radiance at all (visible)

positions and directions
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Problem: How to efficiently compute the
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radiance at a specific position and a direction ?
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(they are not even polygons!).
Is this possible to use rendering equation we have
learned ?

But, there are too many discrete particles to conside?
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Radiative Transfer

The radiative transfer equation
(@ VL @) = = (L 0) + 50 [ plo>- DL D) b

¥

Integrating both sides of the differential RTE along

L(x, ) f exp( f ,uf(xv)dv) s (x) f (0 - @) L(xy, @)da> du

~N
transmlttanc:e T(x,xy) Xy = X — U®
Assuming X is on a hypothetical boundary Q that encloses the
cloud, i.e. Vxp, € Q : us(xp) = 0, we have
. J
b ji¢(x) :extinction
L(x, ) =f T(x, xy ) s(Xy) . p(w - @)L(xy, @) do du coefficient
0

+ T(x,xp)L(xp, ),



Radiative Transfer

b
L(x,0) = ,,/; Teexps(sa) [ o - @)L ) 4 du

+ T(x,xp)L(xp, ),
Boundary

contribution factor: w - @

Neighborhood
surface S?




RADIANCE-PREDICTING NEURAL NETWORKS

b
L(x, w) =/; T(x, Xy s (KH}L/;E plw - @)L(xy, ®) dﬁ]du

+ T(x,xp)L(xp, ),
l The in-scattered radiance

Li(x, w) = ./;E plo - w)L(x, ) do.

Rule out uncollided radiance
(directly from the sun)

Li(}{, m) = f P(ﬂd . Et‘j)(L(K, EU“) _ Ld(xs E’J)) do. This -iS what the NN
S? predicts (estimate)




A combination of and neural networks

b
L(x, w) =L T(x, Xy )ps(Xy) o plow - EJ)L(XH:« 5) dfo]du

+ T(x,xp)L(xp, ®),
l The in-scattered radiance

[ Li(x,w) = /;2 plo - 0)L(x, ©) — Li(x,®)) dfu.]

This is what the NN
predicts (estimate)




RADIANCE-PREDICTING NEURAL NETWORKS

Want to find (learn) a function

g(z;0) : RY - R

Such that,

given z = ¢(S) € R4

| _| S:shading configuration
around x, w

it predicts L (X, )



RADIANCE-PREDICTING NEURAL NETWORKS
Want to find (learn) a function
g(z;0) : RY - R
via

N
~ 1
0 € argmin — ((g(z;i;0),Li(x;,w;)).
s

using

1 i . _ 2
B Z (hjg (1+ g(zi;:0)) — log (1 +Li(x;.mi)f}) ,
icB '

(g =



The Descriptor at a specific configuration (x, w)
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(a) Stencil grid (b) Two levels (c) Local frame

« Each descriptor consists of 5 x 5 x 9 stencils
« The stencil at level k is scaled by 2%~1

» They use K=10 levels (10 stenciles)

» Each stencil is formed by 225 points

The stencil is oriented towards the light source
Two levels of the hierarchy are shown here



The Descriptor at a specific configuration (x, w)

sk = {p(q’f)ap(q’;‘)s g

2 = Ugc(:l 2

y = cos Hw - wp)

plakys)|

' 229

é ] )
x: location
w: direction
w;: direction towards the light source

. J

The Descriptor: 7 — {Z’ }/}



Neural Network Architecture (progressive feeding)

The most finest scale stencil

The most coarse scale
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Training Configuration

Ground Truth data from Path Tracing

N = ~15 million samples

Adam update rule using the default learning rate
—— The minibatches of size |B| = 1000

It requires ~12 h of training on a single GPU



Result (Test Time)

(a) PT reference (b) RPNN
Path Tracing Radiance-Predicting Neural Networks (RPNN)



Result (Test Time)
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(a) PT referene (b) RPNN (ou) (c) PT  (d) RPNN (e) PT reference (f) RPNN (ours) (g) PT  (h) RPNN

They argued that RPNN (seconds to minutes.) converges 24 times faster than PT



Experiment - Neural Network Architecture

Validation
error
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CNN
Ours [10 x 2 x 200, 3 x 200]

Shallow wide MLP [2 x 400, 3 x 200]

Deep narrow MLP [23 x 200]
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Iterations

» Progressive feeding
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> The entire stencil hierarchy
Is input to the first layer

This highlights the benefit of the
progressive feeding that provides
means to better adapt to signals at
different frequency scales.



Experiment — Stencil Size

Validation
error === Regular Stencil [5 = 5 x 5]
—— Regular Stencil [5 = 5 x 9]
—— Data-Driven Stencil [7 x 7 x 7]
\
|
A good balance between accuracy
» and the cost of querying the
density values and number of
0K 50K 100K 150K 200K 250K

trainable parameters in the

lterations network



Summary

Radiative Transfer Equation (RTE)

b
L(x, w) :V/{; T(x, Xy s (xy) o plw - @)L(xy, @) do Qu

+ T(x, xp)L(xp, w),

Hierarchical Stencil Descriptor Progressive Feeding Neural Network
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(a) Stencil grid (b) Two levels (c) Local frame



