Deep Scattering: Rendering Atmospheric Clouds with Radiance-Predicting Neural Networks

SIMON KALLWEIT, Disney Research and ETH Zürich et al.

ACM Transactions on Graphics, Publication date: November 2017

Presenter: MinKu Kang

In Previous Talk from Dennis

Ambient sound propagation

Cloud Rendering

edge-darkening effects

silverlining

Scattering of Light

Light scattering in **microscale**, not just in macro scale

Problem Configuration & Notation

 ω : direction

x: *location*

We want to know (compute) the **radiance** at (x, ω)

To render a whole cloud image, We need to know the radiance at all (visible) positions and directions

Problem: How to efficiently compute the radiance at a specific position and a direction?

Problem Configuration & Notation

 ω : direction

x: *location*

We want to know (compute) the **radiance** at (x, ω)

To render a whole cloud image, We need to know the radiance at all (visible) positions and directions

Problem: How to efficiently compute the radiance at a specific position and a direction?

But, there are too many discrete **particles** to consider (they are not even polygons!).

Is this possible to use **rendering equation** we have learned?

Radiative Transfer

The radiative transfer equation

$$(\omega \cdot \nabla) L(\mathbf{x}, \omega) = -\mu_t(\mathbf{x}) L(\mathbf{x}, \omega) + \mu_s(\mathbf{x}) \int_{S^2} p(\omega \cdot \widehat{\omega}) L(\mathbf{x}, \widehat{\omega}) \, d\widehat{\omega},$$

Integrating both sides of the differential **RTE** along ω

$$L(\mathbf{x},\omega) = \int_0^\infty \exp\left(-\int_0^u \mu_t(\mathbf{x}_v) dv\right) \mu_s(\mathbf{x}_u) \int_{S^2} p(\omega \cdot \widehat{\omega}) L(\mathbf{x}_u, \widehat{\omega}) d\widehat{\omega} du$$

transmittance
$$T(\mathbf{x}, \mathbf{x}_u)$$
 $\mathbf{x}_u = \mathbf{x} - u\omega$

transmittance $T(\mathbf{x}, \mathbf{x}_u)$ $\mathbf{x}_u = \mathbf{x} - u\omega$ Assuming \mathbf{x}_b is on a hypothetical boundary Ω that encloses the cloud, i.e. $\forall \mathbf{x}_b \in \Omega : \mu_t(\mathbf{x}_b) = 0$, we have

$$L(\mathbf{x}, \omega) = \int_0^b T(\mathbf{x}, \mathbf{x}_u) \mu_s(\mathbf{x}_u) \int_{S^2} p(\omega \cdot \widehat{\omega}) L(\mathbf{x}_u, \widehat{\omega}) \, d\widehat{\omega} \, du$$
 coefficient
$$+ T(\mathbf{x}, \mathbf{x}_b) L(\mathbf{x}_b, \omega),$$

Radiative Transfer

$$L(\mathbf{x}, \omega) = \int_0^b T(\mathbf{x}, \mathbf{x}_u) \mu_s(\mathbf{x}_u) \int_{S^2} p(\omega \cdot \widehat{\omega}) L(\mathbf{x}_u, \widehat{\omega}) \, d\widehat{\omega} \, du$$
$$+ T(\mathbf{x}, \mathbf{x}_b) L(\mathbf{x}_b, \omega),$$

RADIANCE-PREDICTING NEURAL NETWORKS

The in-scattered radiance

$$L_s(\mathbf{x},\omega) = \int_{S^2} p(\omega \cdot \widehat{\omega}) L(\mathbf{x},\widehat{\omega}) \, \mathrm{d}\widehat{\omega}.$$

Rule out **uncollided** radiance (directly from the sun)

$$L_{i}(\mathbf{x},\omega) = \int_{S^{2}} p(\omega \cdot \widehat{\omega}) (L(\mathbf{x},\widehat{\omega}) - L_{d}(\mathbf{x},\widehat{\omega})) \, d\widehat{\omega}.$$

This is what the NN predicts (estimate)

A combination of Monte Carlo integration and neural networks

$$L_i(\mathbf{x},\omega) = \int_{S^2} p(\omega \cdot \widehat{\omega}) (L(\mathbf{x},\widehat{\omega}) - L_d(\mathbf{x},\widehat{\omega})) \, \mathrm{d}\widehat{\omega}.$$

This is what the NN predicts (estimate)

Monte-Carlo Integration

RADIANCE-PREDICTING NEURAL NETWORKS

Want to find (learn) a function

$$g(\mathbf{z}; \boldsymbol{\theta}) : \mathbb{R}^d \to \mathbb{R}$$

Such that,

RADIANCE-PREDICTING NEURAL NETWORKS

Want to find (learn) a function

$$g(\mathbf{z}; \boldsymbol{\theta}) : \mathbb{R}^d \to \mathbb{R}$$

via

$$\widehat{\theta} \in \underset{\theta}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} \ell(g(\mathbf{z}_i; \theta), L_i(\mathbf{x}_i, \omega_i)).$$

using

$$\mathcal{D}_{N} = \{ (\mathbf{z}_{1}, L_{i}(\mathbf{x}_{1}, \omega_{1})), \dots, (\mathbf{z}_{N}, L_{i}(\mathbf{x}_{N}, \omega_{N})) \},$$

$$\ell_{\mathcal{B}} = \frac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \left(\log \left(1 + g(\mathbf{z}_{i}; \theta) \right) - \log \left(1 + L_{i}(\mathbf{x}_{i}, \omega_{i}) \right) \right)^{2}.$$

The Descriptor at a specific configuration (x, ω)

- Each descriptor consists of $5 \times 5 \times 9$ stencils
- The stencil at level k is scaled by 2^{k-1}
- They use K=10 levels (10 stenciles)
- Each stencil is formed by 225 points

- The stencil is oriented towards the light source
- Two levels of the hierarchy are shown here

The Descriptor at a specific configuration (x, ω)

$$\Sigma^{k} = \left\{ \rho(\mathbf{q}_{1}^{k}), \rho(\mathbf{q}_{2}^{k}), \dots \rho(\mathbf{q}_{225}^{k}) \right\}$$

$$\Sigma = \bigcup_{k=1}^K \Sigma^k$$

$$\gamma = \cos^{-1}(\omega \cdot \omega_l)$$

x: location

 ω : direction

 ω_l : direction towards the light source

The Descriptor:
$$\mathbf{Z} = \{\Sigma, \gamma\}$$

Neural Network Architecture (progressive feeding)

Training Configuration

Ground Truth data from Path Tracing

 $N = \sim 15$ million samples

Adam update rule using the default learning rate The minibatches of size $|\mathbf{B}| = 1000$

It requires ~12 h of training on a single GPU

Result (Test Time)

(a) PT reference
Path Tracing

(b) RPNN

Radiance-Predicting Neural Networks (RPNN)

Result (Test Time)

They argued that RPNN (seconds to minutes.) converges 24 times faster than PT

Experiment - Neural Network Architecture

Experiment – Stencil Size

A good balance between accuracy and the cost of querying the density values and number of trainable parameters in the network

Summary

Radiative Transfer Equation (RTE)

$$\begin{split} L(\mathbf{x},\omega) &= \int_0^b T(\mathbf{x},\mathbf{x}_u) \mu_s(\mathbf{x}_u) \left(\int_{S^2} p(\omega \cdot \widehat{\omega}) L(\mathbf{x}_u,\widehat{\omega}) \, \mathrm{d}\widehat{\omega} \right) \mathrm{d}u \\ &+ T(\mathbf{x},\mathbf{x}_b) L(\mathbf{x}_b,\omega), \end{split}$$

Hierarchical Stencil Descriptor

Progressive Feeding Neural Network

